skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Anatolyev, Stanislav"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. This paper establishes central limit theorems (CLTs) and proposes how to perform valid inference in factor models. We consider a setting where many counties/regions/assets are observed for many time periods, and when estimation of a global parameter includes aggregation of a cross-section of heterogeneous microparameters estimated separately for each entity. The CLT applies for quantities involving both cross-sectional and time series aggregation, as well as for quadratic forms in time-aggregated errors. This paper studies the conditions when one can consistently estimate the asymptotic variance, and proposes a bootstrap scheme for cases when one cannot. A small simulation study illustrates performance of the asymptotic and bootstrap procedures. The results are useful for making inferences in two-step estimation procedures related to factor models, as well as in other related contexts. Our treatment avoids structural modeling of cross-sectional dependence but imposes time-series independence. 
    more » « less